§1. Noţiune de model şi modelare
Orice om pe parcursul vieţii este nevoit sa rezolve mai multe probleme. Problemele pot fi simple şi complicate. În multe cazuri procesul de rezolvare a problemelor este oral, iar pentru altele sunt necesare calcule care se pot efectua manual (cu ajutorul stiloului, hîrtiei) sau cu ajutorul calculatorului. Oricît de variate nu ar fi problemele, procesul de rezolvare a lor presupune citeva etape obligatorii. Acestea sunt:
Aşadar procesul de rezolvare a problemei se reduce la realizarea sirului de transformari consecutive:
Vom analiza o problemă elementară: se cere de determinat aria suprafeţei unei mese de formă dreptunghiulară. Pentru a rezolva problema este suficient să măsurăm lungimea si lăţimea mesei, iar numerele să le inmulţim.
Această procedură simplă inseamnă de fapt urmatoarele: obiectul real – suprafaţa mesei este inlocuită cu un obiect abstract – dreptunghiul. Considerăm că acest dreptunghi are aceleaşi dimensiuni ca şi suprafaţa mesei. După ce aflăm aria dreptunghiului, considerăm că aria lui este egală aproximativ cu aria suprafeţei mesei.
În asemenea situaţie, vom spune că dreptunghiul reprezintă un model al suprafeţei mesei, iar procesul descris a capatat denumirea de modelare.
Omul aplică modelele din cele mai vechi timpuri la cercetarea proceselor complexe, la înalţarea unor edificii noi etc.
Modelul construit e mai accesibil pentru cercetare decît obiectul real. Unele obiecte în general nu pot fi cercetate direct: nu pot fi, de exemplu, efectuate expe-rienţe cu economia unei ţări.
Dacă obiectul supus cercetării posedă caracteristici dinamice, adică caracteristici ce depind de timp, atunci o importanţă mare o capătă problema pronosticării stării obiectului, sub influienţa diferitor factori, peste un interval de timp. Şi această problemă se rezolvă cu ajutorul modelelor.
Definiţie: Modelul reprezintă un sistem teoretic sau material, construit sau selectat de subiect, cu ajutorul căruia pot fi studiate indirect proprietăţile şi transformările altui sistem (original) mai complex, cu care primul sistem prezintă o analogie. Procesul de construire a modelului se numeşte modelare.
Modelele pot fi materiale şi ideale. Machetul unei clădiri este un model material, iar schema sistemului circulaţiei sangvine pe o planşă este un model ideal).
Modelele ideale pot fi calitative şi cantitative. Modelul calitativ este, de fapt, o descriere verbală. Ele ne dau o imagine generală despre original. Cu toate acestea, după aceste modele originalul nu poate fi construit.
Modelele cantitative reprezintă niste scheme, tabele, formule ce ne permit, în principiu, să construim după ele originalul. Modelul matematic este unul din modelele cantitative.
§2. Noţiune de model matematic
În general, orice problemă tehnică, indiferent de natura sa, parcurge pînă la materializarea soluţiei sale, următoarele etape, reprezentate în figura 1:
Procesul de rezolvare reprezentat în această figură nu este unul liniar: iteraţiile şi revenirile îi sunt specifice. Astfel, din orice etapă se poate reveni la oricare dintre etapele precedente, oricînd putîndu-se constata o disfuncţionalitate sau lipsa unor elemente produse în faze anterioare etapei curente, neplăceri rezovabile numai prin reluarea unor etape deja parcurse.
Nu de puţine ori, chiar în ultima etapă, cea de implementare, se poate constata o eroare majoră în proiectare sau chiar în formularea detaliată a problemei, eroare ce face imposibilă sau nesatisfăcătoare aplicarea soluţiei finale. Particularizând elementele de mai sus pentru activitatea de elaborare a programilor, se constată regăsirea tuturor fazelor din desenul iniţial. În continuare se insistă numai asupra unor particularităţi strict necesare în cazul unor aplicaţii mici sau mijlocii
Download Formule matematice in probleme informatice